
Foldy-Wouthuysen Transformation

A unitary transformation UF removes operators which couple the large to the small
components.

Odd operators (off-diagonal in Pauli-Dirac basis): αi, γi, γ5, · · ·

Even operators (diagonal in Pauli-Dirac basis): 1, β, Σ, · · ·

ψ′ = UFψ = eiSψ, S = hermitian (1)

First consider the case of a free particle, H = α · p + βm not time-dependent.

i
∂ψ′

∂t
= eiSHψ = eiSHe−iSψ′ = H ′ψ′ (2)

We want to find S such that H ′ contains no odd operators. We can try

eiS = eβα·p̂θ = cos θ + βα · p̂ sin θ, where p̂ = p/|p|. (3)

H ′ = (cos θ + βα · p̂ sin θ) (α · p + βm) (cos θ − βα · p̂ sin θ)

= (α · p + βm) (cos θ − βα · p̂ sin θ)2

= (α · p + βm) exp (−2βα · p̂θ)

= (α · p)

(

cos 2θ −
m

|p|
sin 2θ

)

+ β (m cos 2θ + |p| sin 2θ) . (4)

To eliminate (α · p) term we choose tan 2θ = |p|/m, then

H ′ = β
√

m2 + |p|2. (5)

This is the same as the first hamilton we tried except for the β factor which also
gives rise to negative energy solutions. In practice, we need to expand the hamilton
for |p| � m.

General case:

H = α · (p − eA) + βm+ eΦ

= βm + O + E , (6)

O = α · (p − eA), E = eΦ, βO = −Oβ, βE = Eβ (7)

H time-dependent ⇒ S time-dependent

We can only construct S with a non-relativistic expansion of the transformed
hamilton H ′ in a power series in 1/m.
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We’ll expand to p4

m3 and p×(E,B)
m2 .

Hψ = i
∂

∂t

(

e−iSψ′
)

= e−iSi
∂ψ′

∂t
+

(

i
∂

∂t
e−iS

)

ψ′

⇒ i
∂ψ′

∂t
=

[

eiS

(

H − i
∂

∂t

)

e−iS

]

ψ′ = H ′ψ′ (8)

S is expanded in powers of 1/m and is “small” in the non-relativistic limit.

eiSHe−iS = H + i[S,H] +
i2

2!
[S, [S,H]] + · · ·+

in

n!
[S, [S, · · · [S,H]]]. (9)

S = O( 1
m

) to the desired order of accuracy

H ′ = H + i[S,H] −
1

2
[S, [S,H]] −

i

6
[S, [S, [S,H]]] +

1

24
[S, [S, [S, [S, βm]]]]

−Ṡ −
i

2
[S, Ṡ] +

1

6
[S, [S, Ṡ]] (10)

We will eliminate the odd operators order by order in 1/m and repeat until the
desired order is reached.

First order [O(1)]:
H ′ = βm+ E + O + i[S, β]m. (11)

To cancel O, we choose S = − iβO
2m

,

i[S,H] = −O +
β

2m
[O, E ] =

1

m
βO2 (12)

i2

2
[S, [S,H]] = −

βO2

2m
−

1

8m2
[O, [O, E ]] −

1

2m2
O3 (13)

i3

3!
[S, [S, [S,H]]] =

O3

6m2
−

1

6m3
βO4 (14)

i4

4!
[S, [S, [S, [S,H]]]] =

βO4

24m3
(15)

−Ṡ =
iβȮ

2m
(16)

−
i

2
[S, Ṡ] = −

i

8m2
[O, Ȯ] (17)

Collecting everything,

H ′ = β

(

m+
O2

2m
−

O4

8m3

)

+ E −
1

8m2
[O, [O, E ]] −

i

8m2
[O, Ȯ] (18)

+
β

2m
[O, E ] −

O3

3m2
+
iβȮ

2m
= βm + E ′ + O′ (19)
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Now O′ is O( 1
m

), we can transform H ′ by S ′ to cancel O′,

S ′ =
−iβ

2m
O′ =

−iβ

2m

(

β

2m
[O, E ] −

O3

3m2
+
iβȮ

2m

)

(20)

After transformation with S ′,

H ′′ = eiS′

(

H ′ − i
∂

∂t

)

e−iS′

= βm+ E ′ +
β

2m
[O′, E ′] +

iβȮ′

2m
(21)

= βm+ E ′ + O′′, (22)

where O′′ is O( 1
m2 ), which can be cancelled by a third transformation, S ′′ = −iβO′′

2m

H ′′′ = eiS′′

(

H ′′ − i
∂

∂t

)

e−iS′′

= βm+ E ′ (23)

= β

(

m +
O2

2m
−

O4

8m3

)

+ E −
1

8m2
[O, [O, E ]] −

i

8m2
[O, Ȯ] (24)

Evaluating the operator products to the desired order of accuracy,

O2

2m
=

(α · (p − eA))2

2m
=

(p − eA)2

2m
−

e

2m
Σ · B (25)

1

8m2

(

[O, E ] + iȮ
)

=
e

8m2
(−iα · ∇Φ − iα · Ȧ) =

ie

8m2
α · E (26)

[

O,
ie

8m2
α · E

]

=
ie

8m2
[α · p,α · E]

=
ie

8m2

∑

i,j

αiαj

(

−i
∂Ej

∂xi

)

+
e

4m2
Σ · E × p (27)

=
e

8m2
(∇ · E) +

ie

8m2
Σ · (∇× E) +

e

4m2
Σ · E × p

So, the effective hamiltonial to the desired order is

H ′′′ = β

(

m+
(p − eA)2

2m
−

p4

8m3

)

+ eΦ −
e

2m
βΣ · B

−
ie

8m2
Σ · (∇× E) −

e

4m2
Σ · E × p −

e

8m2
(∇ · E) (28)

The individual terms have a direct physical interpretation.

The first term in the parentheses is the expansion of

√

(p − eA)2 +m2 (29)

and −p4/(8m3) is the leading relativistic corrections to the kinetic energy.
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The two terms

−
ie

8m2
Σ · (∇× E) −

e

4m2
Σ · E × p (30)

together are the spin-orbit energy. In a spherically symmetric static potential, they
take a very familar form. In this case ∇× E = 0,

Σ · E × p = −
1

r

∂Φ

∂r
Σ · r × p = −

1

r

∂Φ

∂r
Σ · L, (31)

and this term reduces to

Hspin−orbit =
e

4m2

1

r

∂Φ

∂r
Σ · L. (32)

The last term is known as the Darwin term. In a coulomb potential of a nucleus
with charge Z|e|, it takes the form

−
e

8m2
(∇ · E) = −

e

8m2
Z|e|δ3(r) =

Ze2

8m2
δ3(r) =

Zαπ

2m2
δ3(r), (33)

so it can only affect the S (l = 0) states whose wavefunctions are nonzero at the
origin.

For a Hydrogen-like (single electron) atom,

eΦ = −
Ze2

4πr
, A = 0. (34)

The shifts in energies of various states due to these correction terms can be com-
puted by taking the expectation values of these terms with the corresponding
wavefunctions.

Darwin term (only for S (l = 0) states):
〈

ψns

∣

∣

∣

∣

Zαπ

2m2
δ3(r)

∣

∣

∣

∣

ψns

〉

=
Zαπ

2m2
|ψns(0)|2 =

Z4α4m

2n3
. (35)

Spin-orbit term (nonzero only for l 6= 0):
〈

Zα

4m2

1

r3
σ · r × p

〉

=
Z4α4m

4n3

[j(j + 1) − l(l + 1) − s(s+ 1)]

l(l + 1)(l + 1
2
)

. (36)

Relativistic corrections:
〈

−
p4

8m3

〉

=
Z4α4m

2n4

(

3

4
−

n

l + 1
2

)

. (37)

We find

∆E(l = 0) =
Z4α4m

2n4

(

3

4
− n

)

(38)

= ∆E(l = 1, j =
1

2
), (39)
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so 2S1/2 and 2P1/2 remain degenerate at this level. They are split by Lamb shift
(2S1/2 > 2P1/2) which can be calculated after you learn radiative corrections in
QED. The 2P1/2 and 2P3/2 are split by the spin-orbit interaction (fine structure)
which you should have seen before.

∆E(l = 1, j =
3

2
) − ∆E(l = 1, j =

1

2
) =

Z4α4m

4n3
(40)
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