Foldy-Wouthuysen Transformation

A unitary transformation Uy removes operators which couple the large to the small
components.

Odd operators (off-diagonal in Pauli-Dirac basis): o', 7%, 75, - -

Even operators (diagonal in Pauli-Dirac basis): 1, 3, ¥, - - -
Y =Upt) = €1p, S = hermitian (1)
First consider the case of a free particle, H = a - p + m not time-dependent.
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We want to find S such that H' contains no odd operators. We can try

e = P*P) — cosf + Ba - psinf, where p = p/|p|. (3)

(cos@ + fa - psinb) (- p+ pm) (cosf — fax - psinb)
(a-p+ Bm) (cosh — B - psinb)?

= (a-p+ pm)exp(—20a - pb)
(

a-p) <cos 20 — % sin 29) + [ (m cos 26 + |p| sin 26) . (4)
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To eliminate (a - p) term we choose tan 20 = |p|/m, then
m? + |p|?. (5)

This is the same as the first hamilton we tried except for the 3 factor which also
gives rise to negative energy solutions. In practice, we need to expand the hamilton
for |p| < m.

General case:
H = a-(p—cA)+pfm+ed
= PBm+0O+€, (6)
O=a-(p—cA), E=ed, BO=—08, BE=EP (7)
H time-dependent = S time-dependent

We can only construct S with a non-relativistic expansion of the transformed
hamilton H’ in a power series in 1/m.



We'll expand to qu—t and %.
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S is expanded in powers of 1/m and is “small” in the non-relativistic limit.
¢ He ™ = H +i[S, H] + ;—2![5, (S, H]] + -+ g[s, [S,---[S, H]]]. (9)
S = O(%) to the desired order of accuracy
H' = H+ilS, H) = 315, (5, H]) = 515, 15, [5, H1)) + (.5, [5,[S, o]
_§ - %[S, 3] + é[s, S, §) (10)

We will eliminate the odd operators order by order in 1/m and repeat until the
desired order is reached.

First order [O(1)]:

H' =pBm+&+O+i[S, Bm. (11)
To cancel O, we choose S = —%,
IS, H = —0+ 0.6 =10 (12)
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Now O is O(L), we can transform H' by S to cancel O,
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After transformation with S,
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where 0" is O(=), which can be cancelled by a third transformation, 5" = _an? .
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Evaluating the operator products to the desired order of accuracy,
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So, the effective hamiltonial to the desired order is
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The individual terms have a direct physical interpretation.

The first term in the parentheses is the expansion of

V(p —eA)? +m? (29)

and —p*/(8m?) is the leading relativistic corrections to the kinetic energy.



The two terms

e e

together are the spin-orbit energy. In a spherically symmetric static potential, they
take a very familar form. In this case V x E =0,
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and this term reduces to
e 100
Hpin—orbit = -—>- L. 2
P b 2 or (32)

The last term is known as the Darwin term. In a coulomb potential of a nucleus
with charge Z|e|, it takes the form
e e Ze? Zam
———(V-E)= ———Z|e|6*(r) = —=6*(r) =
so it can only affect the S (I = 0) states whose wavefunctions are nonzero at the
origin.

0%(r), (33)

For a Hydrogen-like (single electron) atom,

b= -2 A= (34)

The shifts in energies of various states due to these correction terms can be com-
puted by taking the expectation values of these terms with the corresponding
wavefunctions.

Darwin term (only for S (I = 0) states):

Zam _ Zamw ,  Z'a'm
Spin-orbit term (nonzero only for [ # 0):
Za 1 Zrtm [j(7+1) =11 +1) —s(s+1)]
(s e) = 0+ D0+ 1) (36)
Relativistic corrections:
P\ Za'm (3 n (37)
sgm3/ 2t \4 I+1i)
We find
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so 2512 and 2P, remain degenerate at this level. They are split by Lamb shift
(2512 > 2P, 5) which can be calculated after you learn radiative corrections in
QED. The 2P,/ and 2Ps, are split by the spin-orbit interaction (fine structure)
which you should have seen before.
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