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1 Introduction

In Physics 215AB, you learned non-relativistic quantum mechanics, e.g., Schrödinger
equation,

E =
p2

2m
+ V,

E → i~
∂

∂t
, p → −i~∇,

i~
∂

∂t
Ψ =

~2

2m
∇2Ψ + VΨ. (1)

Now we would like to extend quantum mechanics to the relativistic domain. The
natural thing at first is to search for a relativistic single-particle wave equation
to replace the Schrödinger equation. It turns out that the form of the relativistic
equation depends on the spin of the particle,

spin-0 Klein-Gordon equation

spin-1/2 Dirac equation

spin-1 Proca equation

etc

It is useful to study these one-particle equations and their solutions for certain
problems. However, at certain point these one-particle relativistic quantum theory
encounter fatal inconsistencies and break down. Essentially, this is because while
energy is conserved in special relativity but mass is not. Particles with mass can
be created and destroyed in real physical processes. For example, pair annihilation
e+e− → 2γ, muon decay µ− → e−ν̄eνµ. They cannot be described by single-particle
theory.

At that stage we are forced to abandon single-particle relativistic wave equations
and go to a many-particle theory in which particles can be created and destroyed,
that is, quantum field theory, which is the subject of the course.
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2 Summary of Special Relativity

An event occurs at a single point in space-time and is defined by its coordinates
xµ, µ = 0, 1, 2, 3,

x0 = ct, x1 = x, x2 = y, x3 = z, (2)

in any given frame.

The interval between 2 events xµ and x̄µ is called s,

s2 = c2(t− t̄)2 − (x− x̄)2 − (y − ȳ)2 − (z − z̄)2

= (x0 − x̄0)2 − (x1 − x̄1)2 − (x2 − x̄2)2 − (x3 − x̄3)2. (3)

We define the metric

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (4)

then we can write

s2 =
∑
µ,ν

gµν(x
µ − x̄µ)(xν − x̄ν) = gµν∆x

µ∆xν , (5)

where we have used the Einstein convention: repeated indices (1 upper + 1 lower)
are summed except when otherwise indicated.

Lorentz transformations

The postulates of Special Relativity tell us that the speed of light is the same in
any inertial frame. s2 is invariant under transformations from one inertial frame
to any other. Such transformations are called Lorentz transformations. We will
only need to discuss the homogeneous Lorentz transformations (under which the
origin is not shifted) here,

x′µ = Λµ
νx

ν . (6)

gµνx
µxν = gµνx

′µx′ν

= gµνΛ
µ ρxρΛν

σx
σ = gρσx

ρxσ

⇒ gρσ = gµνΛ
µ
ρΛ

ν
σ. (7)

It’s convenient to use a matrix notation,

xµ :


x0

x1

x2

x3

 = x. (8)
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s2 = xT gx,

x′ = Λx

⇒ g = ΛT gΛ (9)

Take the determinant,
det g = detΛT det g detΛ, (10)

so detΛ = ±1 (+1: proper Lorentz transformations, −1: improper Lorentz trans-
formations).

Example: Rotations (proper):

x′0 = x0

x′1 = x1 cos θ + x2 sin θ

x′2 = −x1 sin θ + x2 cos θ

x′3 = x3 (11)

Λ =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (12)

Example: Boosts (proper):

t′ = γ(t− v

c2
x1) or x′0 = γx0 − γβx1

x′1 = γ(x1 − vt) = γx1 − γβx0

x′2 = x2

x′3 = x3 (13)

where

β =
v

c
, γ =

1√
1− β2

. (14)

It’s convenient to define a quantity rapidity η such that cosh η = γ, sinh η = γβ,
then

Λ =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1

 . (15)

One can easily check that detΛ = cosh2 η − sinh2 η = 1.

Four-vectors, tensors

A contravariant vector is a set of 4 quantities which transforms like xµ under a
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Lorentz transformation,

V µ =


V 0

V 1

V 2

V 3

 , V ′µ = Λµ
νV

ν . (16)

A covariant vector is a set of 4 quantities which transforms as

A′
µ = Aν

(
Λ−1

)ν
µ
, Λ−1 = gΛT g. (17)

An upper index is called a contravariant index and a lower index is called a co-
variant index. Indices can be raised or lowered with the metric tensor gµν and its
inverse gµν = diag(1,−1,−1,−1), gµλgλν = δµ

ν . The scalar product of a contravari-
ant vector and a covariant vector V µAµ is invariant under Lorentz transformations.

Examples: Energy and momentum form a contravariant 4-vector,

pµ = (
E

c
, px, py, pz). (18)

4- gradient,
∂

∂xµ
=

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
≡ ∂µ (19)

is a covariant vector,

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
=
(
Λ−1

)ν
µ

∂

∂xν
. (20)

One can generalize the concept to tensors,

T ′µ′ν′···
ρ′σ′··· = Λµ′

µΛν′

ν · · · (Λ−1)ρ
ρ′(Λ

−1)σ
σ′ · · ·T µν···

ρσ···. (21)

Maxwell’s equations in Lorentz covariant from (Heaviside-Lorentz conven-
tion)

∇ ·E = ρ (22)

∇ ·B = 0 (23)

∇×E +
1

c

∂B

∂t
= 0 (24)

∇×B − 1

c

∂E

∂t
=

1

c
J (25)

From the second equation we can define a vector potential A such that

B = ∇×A (26)
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Substituting it into the third equation, we have

∇×
(

E +
1

c

∂A

∂t

)
= 0, (27)

then we can define a potential φ, such that

E = −∇φ− 1

c

∂A

∂t
. (28)

Gauge invariance: E, B are not changed under the following transformation,

A → A−∇χ

φ → φ+
1

c

∂

∂t
χ. (29)

(cρ,J) form a 4-vector Jµ. Charge conservation can be written in the Lorentz
covariant form, ∂µJ

µ = 0,

(φ,A) from a 4-vector Aµ (Aµ = (φ,−A)), from which one can derive an antisym-
metric electromagnetic field tensor,

F µν = ∂µAν − ∂νAµ (note: ∂i = −∂i = − ∂

∂xi
, i = 1, 2, 3). (30)

F µν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 , Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


(31)

Maxwell’s equations in the covariant form:

∂µF
µν =

1

c
Jν (32)

∂µF̃
µν = ∂µFλν + ∂λFνµ + ∂νFµλ = 0 (33)

where

F̃ µν ≡ 1

2
εµνλρFλρ, (34)

ε0123 and its even permutation = +1, its odd permutation = −1.
Gauge invariance: Aµ → Aµ + ∂µχ. One can check F µν is invariant under this
transformation.
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3 Klein-Gordon Equation

In non-relativistic mechanics, the energy for a free particle is

E =
p2

2m
. (35)

To get quantum mechanics, we make the following substitutions:

E → i~
∂

∂t
, p → −i~∇, (36)

and the Schródinger equation for a free particle is

− ~2

2m
∇2Ψ = i~

∂Ψ

∂t
. (37)

In relativistic mechanics, the energy of a free particle is

E =
√
p2c2 +m2c4. (38)

Making the same substitution we obtain

√
−~2c2∇2 +m2c2Ψ = i~

∂Ψ

∂t
. (39)

It’s difficult to interpret the operator on the left hand side, so instead we try

E2 = p2c2 +m2c4 (40)

⇒
(
i~
∂

∂t

)2

Ψ = −~2c2∇2 +m2c4Ψ, (41)

or
1

c2

(
∂

∂t

)2

Ψ−∇2Ψ ≡ 2Ψ = −m
2c2

~2
Ψ, (42)

where

2 =
1

c2

(
∂

∂t

)2

−∇2 = ∂µ∂
µ. (43)

Plane-wave solutions are readily found by inspection,

Ψ =
1√
V

exp

(
i

~
p · x

)
exp

(
− i

~
Et

)
, (44)

where E2 = p2c2 + m2c4 and thus E = ±
√
p2c2 +m2c4. Note that there is a

negative energy solution as well as a positive energy solution for each value of p.
Näıvely one should just discard the negative energy solution. For a free particle
in a positive energy state, there is no mechanism for it to make a transition to
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the negative energy state. However, if there is some external potential, the Klein-
Gordon equation is then altered by the usual replacements,

E → E − eφ, p → p− e

c
A, (45)

(i~∂t − eφ)2Ψ = c2(−i~∇− e

c
A)2Ψ +m2c4Ψ. (46)

The solution Ψ can always be expressed as a superposition of free particle solutions,
provided that the latter form a complete set. They from a complete set only if
the negative energy components are retained, so they cannot be simply discarded.

Recall the probability density and current in Schródinger equation. If we multiply
the Schródinger equation by Ψ∗ on the left and multiply the conjugate of the
Schrödinger equation by Ψ, and then take the difference, we obtain

− ~2

2m
(Ψ∗∇2Ψ−Ψ∇2Ψ∗) = i~(Ψ∗Ψ̇ + ΨΨ̇∗)

⇒ − ~2

2m
∇(Ψ∗∇Ψ−Ψ∇Ψ∗) = i~

∂

∂t
(Ψ∗Ψ) (47)

Using ρs = Ψ∗Ψ, js = ~
2mi

(Ψ∗∇Ψ − Ψ∇Ψ∗), we then obtain the equation of
continuity,

∂ρs

∂t
+ ∇ · js = 0 (48)

Now we can carry out the same procedure for the free-particle Klein-Gordon equa-
tion:

Ψ∗2Ψ = −m
2c2

~
Ψ∗Ψ

Ψ2Ψ∗ = −m
2c2

~
ΨΨ∗ (49)

Taking the difference, we obtain

Ψ∗2Ψ−Ψ2Ψ∗ = ∂µ(Ψ∗∂µΨ−Ψ∂µΨ∗) = 0. (50)

This suggests that we can define a probability 4-current,

jµ = α(Ψ∂µΨ−Ψ∂µΨ∗), where α is a constant (51)

and it’s conserved, ∂µj
µ = 0, jµ = (j0, j). To make j agree with js, α is chosen to

be α = − ~
2mi

. So,

ρ =
j0

c
=

i~
2mc2

(
Ψ∗∂Ψ

∂t
−Ψ

∂Ψ∗

∂t

)
. (52)

ρ does reduce to ρs = Ψ∗Ψ in the non-relativistic limit. However, ρ is not positive
-definite and hence can not describe a probability density for a single particle.

Pauli and Weisskopf in 1934 showed that Klein-Gordon equation describes a spin-0
(scalar) field. ρ and j are interpreted as charge and current density of the particles
in the field.
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4 Dirac Equation

To solve the negative probability density problem of the Klein-Gordon equation,
people were looking for an equation which is first order in ∂/∂t. Such an equation
is found by Dirac.

It is difficult to take the square root of −~2c2∇2 +m2c4 for a single wave function.
One can take the inspiration from E&M: Maxwell’s equations are first-order but
combining them gives the second order wave equations.

Imagining that ψ consists of N components ψl,

1

c

∂ψl

∂t
+

3∑
k=1

N∑
n=1

αk
ln

∂ψn

∂xk
+
imc

~

N∑
n=1

βlnψn = 0, (53)

where l = 1, 2, . . . , N , and xk = x, y, z, k = 1 , 2, 3.

ψ =


ψ1

ψ2
...
ψN

 , (54)

and αk, β are N × N matrices. Using the matrix notation, we can write the
equations as

1

c

∂ψ

∂t
+ α ·∇ψ +

imc

~
βψ = 0, (55)

where α = α1x̂+α2ŷ +α3ẑ. N components of ψ describe a new degree of freedom
just as the components of the Maxwell field describe the polarization of the light
quantum. In this case, the new degree of freedom is the spin of the particle and ψ
is called a spinor.

We would like to have positive-definite and conserved probability, ρ = ψ†ψ, where
ψ† is the hermitian conjugate of ψ (so is a row matrix). Taking the hermitian
conjugate of Eq. (55),

1

c

∂ψ†

∂t
+ ∇ψ† ·α− imc

~
ψ†β† = 0. (56)

Multiplying the above equation by ψ and then adding it to ψ†× (55), we obtain

1

c

(
ψ†∂ψ

∂t
+
∂ψ†

∂t
ψ

)
+ ∇ψ† ·α†ψ + ψ†α ·∇ψ +

imc

~
(ψ†βψ − ψ†β†ψ) = 0. (57)

The continuity equation
∂

∂t
(ψ†ψ) + ∇ · j = 0 (58)
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can be obtained if α† = α, β† = β, then

1

c

∂

∂t
(ψ†ψ) + ∇ · (ψ†αψ) = 0 (59)

with
j = cψ†αψ. (60)

From Eq. (55) we can obtain the Hamiltonian,

Hψ = i~
∂ψ

∂t
=

(
c∇ · ~

i
∇ + βmc2

)
ψ. (61)

One can see that H is hermitian if α, β are hermitian.

To derive properties of α, β, we multiply Eq. (55) by the conjugate operator,(
1

c

∂

∂t
−α ·∇− imc

~
β

)(
1

c

∂

∂t
+ α ·∇ +

imc

~
β

)
ψ = 0

⇒
[

1

c2
∂2

∂t2
− αiαj∂i∂j +

m2c2

~2
β2 − imc

~
(βαi + αiβ)∂i

]
ψ = 0 (62)

We can rewrite αiαj∂i∂j as 1
2
(αiαj +αjαi)∂i∂j. Since it’s a relativistic system, the

second order equation should coincide with the Klein-Gordon equation. Therefore,
we must have

αiαj + αjαi = 2δijI (63)

βαi + αiβ = 0 (64)

β2 = I (65)

Because
βαi = −αiβ = (−I)αiβ, (66)

if we take the determinant of the above equation,

det β detαi = (−1)N detαi det β, (67)

we find that N must be even. Next, we can rewrite the relation as

(αi)−1βαi = −β (no summation). (68)

Taking the trace,

Tr
[
(αi)−1βαi

]
= Tr

[
(αiαi)−1β

]
= Tr[β] = Tr[−β], (69)

we obtain Tr[β] = 0. Similarly, one can derive Tr[αi] = 0.
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Covariant form of the Dirac equation

Define

γ0 = β,

γj = βαj, j = 1, 2, 3

γµ = (γ0, γ1, γ2, γ3), γµ = gµνγ
ν (70)

Multiply Eq. (55) by iβ,

iβ ×
(

1

c

∂

∂t
+ α ·∇ +

imc

~
β

)
ψ = 0

⇒
(
iγ0 ∂

∂x0
+ iγj ∂

∂xj
− mc

~

)
ψ =

(
iγµ∂µ −

mc

~

)
ψ = 0 (71)

Using the short-hand notation: γµ∂µ ≡6∂, γµAµ ≡6A,(
i 6∂ − mc

~

)
ψ = 0 (72)

From the properties of the αj and β matrices, we can derive

γ0† = γ0, (hermitian) (73)

γj† = (βαj)† = αj†β† = αjβ = −βαj = −γj, (anti-hermitian)(74)

γµ† = γ0γµγ0, (75)

γµγν + γνγµ = 2gµνI. (Clifford algebra). (76)

Conjugate of the Dirac equation is given by

−i∂µψ
†γµ† − mc

~
ψ† = 0

⇒ −i∂µψ
†γ0γµγ0 − mc

~
ψ† = 0 (77)

We will define the Dirac adjoint spinor ψ by ψ ≡ ψ†γ0. Then

i∂µψγ
µ +

mc

~
ψ = 0. (78)

The four-current is

jµ

c
= ψγµψ =

(
ρ,

j

c

)
, ∂µj

µ = 0. (79)
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Properties of the γµ matrices

We may form new matrices by multiplying γ matrices together. Because different
γ matrices anticommute, we only need to consider products of different γ’s and
the order is not important. We can combine them in 24−1 ways. Plus the identity
we have 16 different matrices,

I

γ0, iγ1, iγ2, iγ3

γ0γ1, γ0γ2, γ0γ3, iγ2γ3, iγ3γ1, iγ1γ2

iγ0γ2γ3, iγ0γ3γ1, iγ0γ1γ2, γ1γ2γ3

iγ0γ1γ2γ3 ≡ γ5(= γ5). (80)

Denoting them by Γl, l = 1, 2, · · · , 16, we can derive the following relations.

(a) ΓlΓm = almΓn, alm = ±1 or ± i.

(b) ΓlΓm = I if and only if l = m.

(c) ΓlΓm = ±ΓmΓl.

(d) If Γl 6= I, there always exists a Γk, such that ΓkΓlΓk = −Γl.

(e) Tr(Γl) = 0 for Γl 6= I.
Proof:

Tr(−Γl) = Tr(ΓkΓlΓk) = Tr(ΓlΓkΓk) = Tr(Γl)

.

(f) Γl are linearly independent:
∑16

k=1 xkΓk = 0 only if xk = 0, k = 1, 2, · · · , 16.
Proof:(

16∑
k=1

xkΓk

)
Γm = xmI +

∑
k 6=m

xkΓkΓm = xmI +
∑
k 6=m

xkakmΓn = 0 (Γn 6= I)

. Taking the trace, xmTr(I) = −
∑

k 6=m xkakmTr(Γn) = 0 ⇒ xm = 0. for any m.
This implies that Γk’s cannot be represented by matrices smaller than 4 × 4. In
fact, the smallest representations of Γk’s are 4 × 4 matrices. (Note that this 4 is
not the dimension of the space-time. the equality is accidental.)

(g) Corollary: any 4×4 matrix X can be written uniquely as a linear combination
of the Γk’s.

X =
16∑

k=1

xkΓk

Tr(XΓm) = xmTr(ΓmΓm) +
∑
k 6=m

xkTr(ΓkΓm) = xmTr(I) = 4xm

xm =
1

4
Tr(xΓm)
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(h) Stronger corollary: ΓlΓm = almΓn where Γn is a different Γn for each m, given
a fixed l.
Proof: If it were not true and one can find two different Γm, Γm′ such that ΓlΓm =
almΓn, ΓlΓm′ = alm′Γn, then we have

Γm = almΓlΓn, Γm′ = alm′ΓlΓn ⇒ Γm =
alm

alm′
Γm′ ,

which contradicts that γk’s are linearly independent.

(i) Any matrix X that commutes with γµ (for all µ) is a multiple of the identity.
Proof: Assume X is not a multiple of the identity. If X commutes with all γµ then
it commutes with all Γl’s, i.e., X = ΓlXΓl. We can express X in terms of the Ga
matrices,

X = xmΓm +
∑
k 6=m

xkΓk, Γm 6= I.

There exists a Γi such that ΓiΓmΓi = −Γm. By the hypothesis that X commutes
with this Γi, we have

X = xmΓm +
∑
k 6=m

xkΓk = ΓiXΓi

= xmΓiΓmΓi +
∑
k 6=m

xkΓiΓkΓi

= −xmΓm +
∑
k 6=m

±xkΓk.

Since the expansion is unique, we must have xm = −xm. Γm was arbitrary except
that Γm 6= I. This implies that all xm = 0 for Γm 6= I and hence X = aI.

(j) Pauli’s fundamental theorem: Given two sets of 4×4 matrices γµ and γ′µ which
both satisfy

{γµ, γν} = 2gµνI,

there exists a nonsingular matrix S such that

γ′µ = SγµS−1.

Proof: F is an arbitrary 4 × 4 matrix, set Γi is constructed from γµ and Γ′
i is

constructed from γ′µ. Let

S =
16∑
i=1

Γ′
iFΓi.

ΓiΓj = aijΓk

ΓiΓjΓiΓj = a2
ijΓ

2
k = a2

ij

ΓiΓiΓjΓiΓjΓj = ΓjΓi = a2
ijΓiΓj = a3

ijΓk

Γ′
iΓ

′
j = aijΓ

′
k
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For any i,

Γ′
iSΓi =

∑
j

Γ′
iγ

′
jFΓjΓi =

∑
j

a4
ijΓ

′
kFΓk =

∑
j

Γ′
kFΓk = S, (a4

ij = 1).

It remains only to prove that S is nonsingular.

S ′ =
16∑
i=1

ΓiGΓ′
i, for G arbitrary.

By the same argument, we have S ′ = ΓiS
′Γ′

i.

S ′S = ΓiS
′Γ′

iΓ
′
iSΓi = ΓiS

′SΓi,

S ′S commutes with Γi for any i so S ′S = aI. We can choose a 6= 0 because F, G
are arbitrary, then S is nonsingular. Also, S is unique up to a constant. Otherwise
if we had S1γ

µS−1
1 = S2γ

µS−1
2 , then S−1

2 S1γ
µ = γµS−1

2 S1 ⇒ S−1
2 S1 = aI.

Specific representations of the γµ matrices

Recall H = (−cα(i~)∇+βmc2). In the non-relativistic limit, mc2 term dominates
the total energy, so it’s convenient to represent β = γ0 by a diagonal matrix. Recall
Trβ = 0 and β2 = I, so we choose

β =

(
I 0
0 I

)
where I =

(
1 0
0 1

)
. (81)

αk’s anticommute with β and are hermitian,

αk =

(
0 Ak

(Ak)† 0

)
, (82)

Ak: 2 × 2 matrices, anticommute with each other. These properties are satisfied
by the Pauli matrices, so we have

αk =

(
0 σk

σk 0

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(83)

From these we obtain

γ0 = β =

(
I 0
0 −I

)
, γi = βαi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 I
I 0

)
.

(84)
This is the “Pauli-Dirac” representation of the γµ matrices. It’s most useful for
system with small kinetic energy, e.g., atomic physics.

Let’s consider the simplest possible problem: free particle at rest. ψ is a 4-
component wave-function with each component satisfying the Klein-Gordon equa-
tion,

ψ = χ e
i
~ (p·x−Et), (85)
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where χ is a 4-component spinor and E2 = p2c2 +m2c4.

Free particle at rest: p = 0, ψ is independent of x,

Hψ = (−i~cα · ∇+mc2γ0)ψ = mc2γ0ψ = Eψ. (86)

In Pauli-Dirac representation,γ0 = diag(1, 1,−1,−1), the 4 fundamental solutions
are

χ1 =


1
0
0
0

 , E = mc2,

χ2 =


0
1
0
0

 , E = mc2,

χ3 =


0
0
1
0

 , E = −mc2,

χ4 =


0
0
0
1

 , E = −mc2.

As we shall see, Dirac wavefunction describes a particle pf spin-1/2. χ1, χ2 repre-
sent spin-up and spin-down respectively with E = mc2. χ3, χ4 represent spin-up
and spin-down respectively with E = −mc2. As in Klein-Gordon equation, we
have negative solutions and they can not be discarded.

For ultra-relativistic problems (most of this course), the “Weyl” representation is
more convenient.

ψPD =


ψ1

ψ2

ψ3

ψ4

 =

(
ψA

ψB

)
, ψA =

(
ψ1

ψ2

)
, ψb =

(
ψ3

ψ4

)
. (87)

In terms of ψA and ψB, the Dirac equation is

i
∂

∂x0
ψA + iσ ·∇ψB =

mc

~
ψA,

−i ∂
∂x0

ψB − iσ ·∇ψA =
mc

~
ψB. (88)

Let’s define

ψA =
1√
2
(φ1 + φ2), ψB =

1√
2
(φ2 − φ1) (89)
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and rewrite the Dirac equation in terms of φ1 and φ2,

i
∂

∂x0
φ1 − iσ ·∇φ1 =

mc

~
φ2,

i
∂

∂x0
φ2 + iσ ·∇φ2 =

mc

~
φ1. (90)

On can see that φ1 and φ2 are coupled only via the mass term. In ultra-relativistic
limit (or for nearly massless particle such as neutrinos), rest mass is negligible,
then φ1 and φ2 decouple,

i
∂

∂x0
φ1 − iσ ·∇φ1 = 0,

i
∂

∂x0
φ2 + iσ ·∇φ2 = 0, (91)

The 4-component wavefunction in the Weyl representation is written as

ψWeyl =

(
φ1

φ2

)
. (92)

Let’s imagine that a massless spin-1/2 neutrino is described by φ1, a plane wave
state of a definite momentum p with energy E = |p|c,

φ1 ∝ e
i
~ (p·x−Et). (93)

i
∂

∂x0
φ1 = i

1

c

∂

∂t
φ1 =

E

~c
φ1,

iσ ·∇φ1 = −1

~
σ · pφ1

⇒ Eφ1 = |p|cφ1 = −cσ · pφ1 or
σ · p
|p|

φ1 = −φ1. (94)

The operator h = σ · p/|p| is called the “helicity.” Physically it refers to the
component of spin in the direction of motion. φ1 describes a neutrino with helicity
−1 (“left-handed”). Similarly,

σ · p
|p|

φ2 = φ2, (h = +1, “right-handed”). (95)

The γµ’s in the Weyl representation are

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−I 0
0 I

)
. (96)

Exercise: Find the S matrix which transform between the Pauli-Dirac represen-
tation and the Weyl representation and verify that the gaµ matrices in the Weyl
representation are correct.
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5 Lorentz Covariance of the Dirac Equation

We will set ~ = c = 1 from now on.

In E&M, we write down Maxwell’s equations in a given inertial frame, x, t, with the
electric and magnetic fields E, B. Maxwell’s equations are covariant with respect
to Lorentz transformations, i.e., in a new Lorentz frame, x′, t′, the equations have
the same form, but the fields E′(x′, t′), B′(x′, t′) are different.

Similarly, Dirac equation is Lorentz covariant, but the wavefunction will change
when we make a Lorentz transformation. Consider a frame F with an observer O
and coordinates xµ. O describes a particle by the wavefunction ψ(xµ) which obeys(

iγµ ∂

∂xµ
−m

)
ψ(xµ). (97)

In another inertial frame F ′ with an observer O′ and coordinates x′ν given by

x′ν = Λν
µx

µ, (98)

O′ describes the same particle by ψ′(x′ν) and ψ′(x′ν) satisfies(
iγν ∂

∂x′ν
−m

)
ψ′(x′ν). (99)

Lorentz covariance of the Dirac equation means that the γ matrices are the same
in both frames.

What is the transformation matrix S which takes ψ to ψ′ under the Lorentz trans-
formation?

ψ′(Λx) = Sψ(x). (100)

Applying S to Eq. (97),

iSγµS−1 ∂

∂xµ
Sψ(xµ)−mSψ(xµ) = 0

⇒ iSγµS−1 ∂

∂xµ
ψ′(x′ν)−mψ′(x′ν) = 0. (101)

Using
∂

∂xµ
=

∂

∂x′ν
∂x′ν

∂xµ
= Λν

µ

∂

∂x′ν
, (102)

we obtain

iSγµS−1Λν
µ

∂

∂x′ν
ψ′(x′ν)−mψ′(x′ν) = 0. (103)

Comparing it with Eq. (99), we need

SγµS−1Λν
µ = γν or equivalently SγµS−1 =

(
Λ−1

)µ
ν
γν . (104)
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We will write down the form of the S matrix without proof. You are encouraged
to read the derivation in Shulten’s notes Chapter 10, p.319-321 and verify it by
yourself.

For an infinitesimal Lorentz transformation, Λµ
ν = δµ

ν + εµν . Multiplied by gνλ it
can be written as

Λµλ = gµλ + εµλ, (105)

where εµλ is antisymmetric in µ and λ. Then the corresponding Lorentz transfor-
mation on the spinor wavefunction is given by

S(εµν) = I − i

4
σµνε

µν , (106)

where

σµν =
i

2
(γµγν − γνγµ) =

i

2
[γµ, γν ]. (107)

For finite Lorentz transformation,

S = exp

(
− i

4
σµνε

µν

)
. (108)

Note that one can use either the active transformation (which transforms the ob-
ject) or the passive transformation (which transforms the coordinates), but care
should be taken to maintain consistency. We will mostly use passive transforma-
tions unless explicitly noted otherwise.

Example: Rotation about z-axis by θ angle (passive).

−ε12 = +ε21 = θ, (109)

σ12 =
i

2
[γ1, γ2] = iγ1γ2

= i

(
−iσ3 0

0 −iσ3

)
=

(
σ3 0
0 σ3

)
≡ Σ3 (110)

S = exp

(
+
i

2
θ

(
σ3 0
0 σ3

))
= I cos

θ

2
+ i

(
σ3 0
0 σ3

)
sin

θ

2
. (111)

We can see that ψ transforms under rotations like an spin-1/2 object. For a
rotation around a general direction n̂,

S = I cos
θ

2
+ in̂ ·Σ sin

θ

2
. (112)
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Example: Boost in x̂ direction (passive).

ε01 = −ε10 = η, (113)

σ01 =
i

2
[γ0, γ1] = iγ0γ1, (114)

S = exp

(
− i

4
σµνε

µν

)
= exp

(
− i

2
ηiγ0γ1

)
= exp

(η
2
γ0γ1

)
= exp

(
−η

2
α1
)

= I cosh
η

2
− α1 sinh

η

2
. (115)

For a particle moving in the direction of n̂ in the new frame, we need to boost the
frame in the −n̂ direction,

S = I cosh
η

2
+ α · n̂ sinh

η

2
. (116)

6 Free Particle Solutions to the Dirac Equation

The solutions to the Dirac equation for a free particle at rest are

ψ1 =

√
2m

V


1
0
0
0

 e−imt, E = +m,

ψ2 =

√
2m

V


0
1
0
0

 e−imt, E = +m,

ψ3 =

√
2m

V


0
0
1
0

 eimt, E = −m,

ψ4 =

√
2m

V


0
0
0
1

 eimt, E = −m, (117)

where we have set ~ = c = 1 and V is the total volume. Note that I have chosen
a particular normalization ∫

d3xψ†ψ = 2m (118)
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for a particle at rest. This is more convenient when we learn field theory later,
because ψ†ψ is not invariant under boosts. Instead, it’s the zeroth component of
a 4-vector, similar to E.

The solutions for a free particle moving at a constant velocity can be obtained by
a Lorentz boost,

S = I cosh
η

2
+ α · n̂ sinh

η

2
. (119)

Using the Pauli-Dirac representation,

αi =

(
0 σi

σi 0

)
,

S =

(
cosh η

2
σ · n̂ sinh η

2

σ · n̂ sinh η
2

cosh η
2

)
, (120)

and the following relations,

cosh η = γ′ =
E ′

m
, sinh η = γ′β′,

cosh
η

2
=

√
1 + cosh η

2
=

√
1 + γ′

2
=

√
m+ E ′

2m
,

sinh
η

2
=

√
cosh η − 1

2
=

√
E ′ −m

2m
−p′µx′µ = p′

+ · x′ − E ′t′ = −pµx
µ = −mt, (121)

where p′
+ = |p′

+|n̂ is the 3-momentum of the positive energy state, we obtain

ψ′
1(x

′) = Sψ1(x) =

√
2m

V

 cosh η
2

(
1
0

)
σ · n̂ sinh η

2

(
1
0

)
 e−imt

=
1√
V

√
m+ E ′


(

1
0

)
√

E′−m
E′+m

σ · n̂
(

1
0

)
 ei(p′+·x′−E′t′)

=
1√
V

√
m+ E ′


(

1
0

)
σ·p′+
E′+m

(
1
0

)
 ei(p′+·x′−E′t′) (122)

where we have used √
E ′ −m

E ′ +m
=

√
E ′2 −m2

E ′ +m
=

|p′
+|

E ′ +m
(123)

in the last line.
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ψ′
2(x

′) has the same form except that

(
1
0

)
is replaced by

(
0
1

)
.

For the negative energy solutions E ′
− = −E ′ = −

√
|p|2 +m2 and p′

− = vn̂E ′
− =

−vE ′n̂ = −p′
+. So we have

ψ′
3(x

′) =
1√
V

√
m+ E ′

−
σ·p′−
E′+m

(
1
0

)
(

1
0

)
 ei(p′−·x′+E′t′), (124)

and ψ′
4(x

′) is obtained by the replacement

(
1
0

)
→
(

0
1

)
.

Now we can drop the primes and the ± subscripts,

ψ1,2 =
1√
V

√
E +m

(
χ+,−

σ·p
E+m

χ+,−

)
ei(p·x−Et) =

1√
V
u1,2e

i(p·x−Et),

ψ3,4 =
1√
V

√
E +m

(
− σ·p

E+m
χ+,−

χ+,−

)
ei(p·x+Et) =

1√
V
u3,4e

i(p·x+Et), (125)

where

χ+ =

(
1
0

)
, χ− =

(
0
1

)
(126)

(V is the proper volume in the frame where the particle is at rest.)

Properties of spinors u1, · · ·u4

u†rus = 0 for r 6= s. (127)

u†1u1 = (E +m)
(
χ†+ χ†+

σ·p
E+m

)( χ+
σ·p

E+m
χ+

)
= (E +m)χ†+

(
1 +

(σ · p)(σ · p)

(E +m)2

)
χ+. (128)

Using the following identity:

(σ · a)(σ · b) = σiaiσjbj = (δij + iεijkσk)aibj = a · b + iσ · (a× b), (129)

we have

u†1u1 = (E +m)χ†+

(
1 +

|p|2

(E +m)2

)
χ+

= (E +m)χ†+
E2 + 2Em+m2 + |p|2

(E +m)2
χ+

= χ+
2E2 + 2Em

E +m
χ+

= 2Eχ†+χ+ = 2E. (130)
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Similarly for other ur we have u†rus = δrs2E, which reflects that ρ = ψ†ψ is the
zeroth component of a 4-vector.

One can also check that
urus = ±2mδrs (131)

where + for r = 1, 2 and − for r = 3, 4.

u1u1 = u†1γ
0u1 γ0 =

(
I 0
0 −I

)
= (E +m)χ†+

(
1− |p|2

(E +m)2

)
χ+

= (E +m)χ†+
E2 + 2Em+m2 − |p|2

(E +m)2
χ+

= χ+
2m2 + 2Em

E +m
χ+

= 2mχ†+χ+ = 2m (132)

is invariant under Lorentz transformation.

Orbital angular momentum and spin

Orbital angular momentum

L = r × p or

Li = εijkrjpk. (133)

(We don’t distinguish upper and lower indices when dealing with space dimensions
only.)

dLi

dt
= i[H, Li]

= i[cα · p + βmc2, Li]

= icαn[pn, εijkrjpk]

= icαnεijk[pn, rj]pk

= icαnεijk(−iδnj~)pk

= c~εijkαjpk

= c~(α× p)i 6= 0. (134)

We find that the orbital angular momentum of a free particle is not a constant of
the motion.
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Consider the spin 1
2
Σ = 1

2

(
σi 0
0 σi

)
,

dΣi

dt
= i[H, Σi]

= i[cαjpj + βmc2, Σi]

= ic[αj, Σi]pj

[
using Σiγ5 =

(
σi 0
0 σi

)(
0 I
I 0

)
=

(
0 σi

σi 0

)
= αi = γ5Σi

]
= ic[γ5Σj, Σi]pj

= icγ5[Σj, Σi]pj

= icγ5(−2iεijkΣk)pj

= 2cγ5εijkΣkpj

= 2cεijkαkpj

= −2c(α× p)i. (135)

Comparing it with Eq. (134), we find

d(Li + 1
2
~Σi)

dt
= 0, (136)

so the total angular momentum J = L + 1
2
~Σ is conserved.

7 Interactions of a Relativistic Electron with an

External Electromagnetic Field

We make the usual replacement in the presence of external potential:

E → E − eφ = i~
∂

∂t
− eφ, e < 0 for electron

p → p− e

c
A = −i~∇− e

c
A. (137)

In covariant form,

∂µ → ∂µ +
ie

~c
Aµ → ∂µ + ieAµ ~ = c = 1. (138)

Dirac equation in external potential:

iγµ(∂µ + ieAµ)ψ −mψ = 0. (139)

Two component reduction of Dirac equation in Pauli-Dirac basis:(
I 0
0 −I

)
(E − eφ)

(
ψA

ψB

)
−
(

0 σ
σ 0

)
(p− eA)

(
ψA

ψB

)
−m

(
ψA

ψB

)
= 0,

⇒ (E − eφ)ψA − σ · (p− eA)ψB −mψA = 0 (140)

−(E − eφ)ψB + σ · (p− eA)ψA −mψB = 0 (141)
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where E and p represent the operators i∂t and −i∇ respectively. Define W =
E −m, π = p− eA, then we have

σ · πψB = (W − eφ)ψA (142)

σ · πψA = (2m+W − eφ)ψB (143)

From Eq. (143),
ψB = (2m+W − eφ)−1σ · πψA. (144)

Substitute it into Eq. (142),

(σ · π)(σ · π)

2m+W − eφ
ψA = (W − eφ)ψA. (145)

In non-relativistic limit, W − eφ� m,

1

2m+W − eφ
=

1

2m

(
1− W − eφ

2m
+ · · ·

)
. (146)

In the lowest order approximation we can keep only the leading term 1
2m

,

1

2m
(σ · π)(σ · π)ψA ' (W − eφ)ψA. (147)

Using Eq. (129),

(σ · π)(σ · π)ψA = [π · π + iσ · (π × π)]ψA. (148)

(π × π)ψA = [(p− eA)× (p− eA)]ψA

= [−eA× p− ep×A]ψA

= [+ieA×∇ + ie∇×A]ψA

= ieψA(∇×A)

= ieBψA, (149)

so
1

2m
(p− eA)2ψA −

e

2m
σ ·BψA + eφψA = WψA. (150)

Restoring ~, c,

1

2m
(p− e

c
A)2ψA −

e~
2mc

σ ·BψA + eφψA = WψA. (151)

This is the “Pauli-Schrödinger equation” for a particle with the spin-magnetic
moment,

µ =
e~

2mc
σ = 2

e

2mc
S. (152)
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In comparison, the relation between the angular momentum and the magnetic
moment of a classical charged object is given by

µ =
Iπr2

c
= e

ω

2π

πr2

c
=
eωr2

2c
=

e

2mc
mωr2 =

e

2mc
L. (153)

We can write
µ = gs

e

2mc
S (154)

in general. In Dirac theory, gs = 2. Experimentally,

gs(e
−) = 2× (1.0011596521859± 38× 10−13). (155)

The deviation from 2 is due to radiative corrections in QED, (g− 2)/2 = α
2π

+ · · · .
The predicted value for gs − 2 using α from the quantum Hall effect is

(gs − 2)qH/2 = 0.0011596521564± 229× 10−13. (156)

They agree down to the 10−11 level.

There are also spin-1/2 particles with anomalous magnetic moments, e.g.,

µproton = 2.79
|e|

2mpc
, µneutron = −1.91

|e|
2mnc

. (157)

This can be described by adding the Pauli moment term to the Dirac equation,

iγµ(∂µ + iqAµ)ψ −mψ + kσµνF
µνψ = 0. (158)

Recall

σµν =
i

2
(γµγν − γνγµ),

σ0i = iγ0γi = i

(
I 0
0 −I

)(
0 −σi

σi 0

)
= i

(
0 −σi

−σi 0

)
= −iαi,

σij = iγiγj = εijkΣ
k = εijk

(
σk 0
0 σk

)
,

F 0i = −Ei,

F ij = −εijkBk. (159)

Then the Pauli moment term can be written as

iγµ(∂µ + iqAµ)ψ −mψ + 2ikα ·Eψ − 2kΣ ·Bψ = 0. (160)

The two component reduction gives

(E − qφ)ψA − σ · πψB −mψA + 2ikσ ·EψB − 2kσ ·BψA = 0, (161)

−(E − qφ)ψB + σ · πψA −mψB + 2ikσ ·EψA − 2kσ ·BψB = 0. (162)
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(σ · π − 2ikσ ·E)ψB = (W − qφ− 2kσ ·B)ψA, (163)

(σ · π + 2ikσ ·E)ψA = (2m+W − qφ+ 2kσ ·B)ψB. (164)

Again taking the non-relativistic limit,

ψB '
1

2m
(σ · π + 2ikσ ·E)ψA, (165)

we obtain

(W − qφ− 2kσ ·B)ψA =
1

2m
(σ · π − 2ikσ ·E)(σ · π + 2ikσ ·E)ψA. (166)

Let’s consider two special cases.

(a) φ = 0, E = 0

(W − 2kσ ·B)ψA =
1

2m
(σ · π)2ψA

⇒ WψA =
1

2m
π2ψA −

q

2m
σ ·BψA + 2kσ ·BψA

⇒ µ =
q

2m
− 2k. (167)

(b) B = 0, E 6= 0 for the neutron (q = 0)

WψA =
1

2m
σ · (p + iµnE) σ · (p− iµnE)ψA

=
1

2m
[(p + iµnE) · (p + iµnE) + iσ · (p + iµnE)× (p− iµnE)]ψA

=
1

2m

[
p2 + µ2

nE
2 + iµnE · p− iµnp ·E + iσ · (iµnp×E − iµnE × p)

]
ψA

=
1

2m

[
p2 + µ2

nE
2 − µn(∇ ·E) + 2µnσ · (E × p) + iµnσ · (∇×E)

]
ψA

=
1

2m

[
p2 + µ2

nE
2 − µnρ+ 2µnσ · (E × p)

]
ψA. (168)

The last term is the spin-orbit interaction,

σ · (E × p) = −1

r

dφ

dr
σ · (r × p) = −1

r

dφ

dr
σ ·L. (169)

The second to last term gives an effective potential for a slow neutron moving in
the electric field of an electron,

V = −µnρ

2m
=

µn

2m
(−e)δ3(r). (170)

It’s called “Foldy” potential and does exist experimentally.
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8 Foldy-Wouthuysen Transformation

We now have the Dirac equation with interactions. For a given problem we can
solve for the spectrum and wavefunctions (ignoring the negative energy solutions
for a moment), for instance, the hydrogen atom, We can compare the solutions
to those of the schrödinger equation and find out the relativistic corrections to
the spectrum and the wavefunctions. In fact, the problem of hydrogen atom can
be solved exactly. However, the exact solutions are problem-specific and involve
unfamiliar special functions, hence they not very illuminating. You can find the
exact solutions in many textbooks and also in Shulten’s notes. Instead, in this
section we will develop a systematic approximation method to solve a system in
the non-relativistic regime (E−m� m). It corresponds to take the approximation
we discussed in the previous section to higher orders in a systematic way. This
allows a physical interpretation for each term in the approximation and tells us the
relative importance of various effects. Such a method has more general applications
for different problems.

In Foldy-Wouthuysen transformation, we look for a unitary transformation UF

removes operators which couple the large to the small components.

Odd operators (off-diagonal in Pauli-Dirac basis): αi, γi, γ5, · · ·

Even operators (diagonal in Pauli-Dirac basis): 1, β, Σ, · · ·

ψ′ = UFψ = eiSψ, S = hermitian (171)

First consider the case of a free particle, H = α · p + βm not time-dependent.

i
∂ψ′

∂t
= eiSHψ = eiSHe−iSψ′ = H ′ψ′ (172)

We want to find S such that H ′ contains no odd operators. We can try

eiS = eβα·p̂θ = cos θ + βα · p̂ sin θ, where p̂ = p/|p|. (173)

H ′ = (cos θ + βα · p̂ sin θ) (α · p + βm) (cos θ − βα · p̂ sin θ)

= (α · p + βm) (cos θ − βα · p̂ sin θ)2

= (α · p + βm) exp (−2βα · p̂θ)

= (α · p)

(
cos 2θ − m

|p|
sin 2θ

)
+ β (m cos 2θ + |p| sin 2θ) . (174)

To eliminate (α · p) term we choose tan 2θ = |p|/m, then

H ′ = β
√
m2 + |p|2. (175)

This is the same as the first Hamiltonian we tried except for the β factor which
also gives rise to negative energy solutions. In practice, we need to expand the
Hamiltonian for |p| � m.

26



General case:

H = α · (p− eA) + βm+ eΦ

= βm+O + E , (176)

O = α · (p− eA), E = eΦ, βO = −Oβ, βE = Eβ (177)

H time-dependent ⇒ S time-dependent

We can only construct S with a non-relativistic expansion of the transformed
Hamiltonian H ′ in a power series in 1/m.

We’ll expand to p4

m3 and p×(E, B)
m2 .

Hψ = i
∂

∂t

(
e−iSψ′) = e−iSi

∂ψ′

∂t
+

(
i
∂

∂t
e−iS

)
ψ′

⇒ i
∂ψ′

∂t
=

[
eiS

(
H − i

∂

∂t

)
e−iS

]
ψ′ = H ′ψ′ (178)

S is expanded in powers of 1/m and is “small” in the non-relativistic limit.

eiSHe−iS = H + i[S,H] +
i2

2!
[S, [S,H]] + · · ·+ in

n!
[S, [S, · · · [S,H]]]. (179)

S = O( 1
m

) to the desired order of accuracy

H ′ = H + i[S,H]− 1

2
[S, [S,H]]− i

6
[S, [S, [S,H]]] +

1

24
[S, [S, [S, [S, βm]]]]

−Ṡ − i

2
[S, Ṡ] +

1

6
[S, [S, Ṡ]] (180)

We will eliminate the odd operators order by order in 1/m and repeat until the
desired order is reached.

First order [O(1)]:
H ′ = βm+ E +O + i[S, β]m. (181)

To cancel O, we choose S = − iβO
2m

,

i[S,H] = −O +
β

2m
[O, E ] +

1

m
βO2 (182)

i2

2
[S, [S,H]] = −βO

2

2m
− 1

8m2
[O, [O, E ]]− 1

2m2
O3 (183)

i3

3!
[S, [S, [S,H]]] =

O3

6m2
− 1

6m3
βO4 (184)

i4

4!
[S, [S, [S, [S,H]]]] =

βO4

24m3
(185)

−Ṡ =
iβȮ
2m

(186)

− i
2
[S, Ṡ] = − i

8m2
[O, Ȯ] (187)
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Collecting everything,

H ′ = β

(
m+

O2

2m
− O4

8m3

)
+ E − 1

8m2
[O, [O, E ]]− i

8m2
[O, Ȯ] (188)

+
β

2m
[O, E ]− O3

3m2
+
iβȮ
2m

= βm+ E ′ +O′ (189)

Now O′ is O( 1
m

), we can transform H ′ by S ′ to cancel O′,

S ′ =
−iβ
2m

O′ =
−iβ
2m

(
β

2m
[O, E ]− O3

3m2
+
iβȮ
2m

)
(190)

After transformation with S ′,

H ′′ = eiS′
(
H ′ − i

∂

∂t

)
e−iS′ = βm+ E ′ + β

2m
[O′, E ′] +

iβȮ′

2m
(191)

= βm+ E ′ +O′′, (192)

where O′′ is O( 1
m2 ), which can be cancelled by a third transformation, S ′′ = −iβO′′

2m

H ′′′ = eiS′′
(
H ′′ − i

∂

∂t

)
e−iS′′ = βm+ E ′ (193)

= β

(
m+

O2

2m
− O4

8m3

)
+ E − 1

8m2
[O, [O, E ]]− i

8m2
[O, Ȯ] (194)

Evaluating the operator products to the desired order of accuracy,

O2

2m
=

(α · (p− eA))2

2m
=

(p− eA)2

2m
− e

2m
Σ ·B (195)

1

8m2

(
[O, E ] + iȮ

)
=

e

8m2
(−iα · ∇Φ− iα · Ȧ) =

ie

8m2
α ·E (196)[

O, ie

8m2
α ·E

]
=

ie

8m2
[α · p,α ·E]

=
ie

8m2

∑
i,j

αiαj

(
−i∂E

j

∂xi

)
+

e

4m2
Σ ·E × p (197)

=
e

8m2
(∇ ·E) +

ie

8m2
Σ · (∇×E) +

e

4m2
Σ ·E × p

So, the effective Hamiltonian to the desired order is

H ′′′ = β

(
m+

(p− eA)2

2m
− p4

8m3

)
+ eΦ− e

2m
βΣ ·B

− ie

8m2
Σ · (∇×E)− e

4m2
Σ ·E × p− e

8m2
(∇ ·E) (198)
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The individual terms have a direct physical interpretation.

The first term in the parentheses is the expansion of√
(p− eA)2 +m2 (199)

and −p4/(8m3) is the leading relativistic corrections to the kinetic energy.

The two terms

− ie

8m2
Σ · (∇×E)− e

4m2
Σ ·E × p (200)

together are the spin-orbit energy. In a spherically symmetric static potential, they
take a very familiar form. In this case ∇×E = 0,

Σ ·E × p = −1

r

∂Φ

∂r
Σ · r × p = −1

r

∂Φ

∂r
Σ ·L, (201)

and this term reduces to

Hspin−orbit =
e

4m2

1

r

∂Φ

∂r
Σ ·L. (202)

The last term is known as the Darwin term. In a coulomb potential of a nucleus
with charge Z|e|, it takes the form

− e

8m2
(∇ ·E) = − e

8m2
Z|e|δ3(r) =

Ze2

8m2
δ3(r) =

Zαπ

2m2
δ3(r), (203)

so it can only affect the S (l = 0) states whose wavefunctions are nonzero at the
origin.

For a Hydrogen-like (single electron) atom,

eΦ = −Ze
2

4πr
, A = 0. (204)

The shifts in energies of various states due to these correction terms can be com-
puted by taking the expectation values of these terms with the corresponding
wavefunctions.

Darwin term (only for S (l = 0) states):〈
ψns

∣∣∣∣Zαπ2m2
δ3(r)

∣∣∣∣ψns

〉
=
Zαπ

2m2
|ψns(0)|2 =

Z4α4m

2n3
. (205)

Spin-orbit term (nonzero only for l 6= 0):〈
Zα

4m2

1

r3
σ · r × p

〉
=
Z4α4m

4n3

[j(j + 1)− l(l + 1)− s(s+ 1)]

l(l + 1)(l + 1
2
)

. (206)
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Relativistic corrections:〈
− p4

8m3

〉
=
Z4α4m

2n4

(
3

4
− n

l + 1
2

)
. (207)

We find

∆E(l = 0) =
Z4α4m

2n4

(
3

4
− n

)
(208)

= ∆E(l = 1, j =
1

2
), (209)

so 2S1/2 and 2P1/2 remain degenerate at this level. They are split by Lamb shift
(2S1/2 > 2P1/2) which can be calculated after you learn radiative corrections in
QED. The 2P1/2 and 2P3/2 are split by the spin-orbit interaction (fine structure)
which you should have seen before.

∆E(l = 1, j =
3

2
)−∆E(l = 1, j =

1

2
) =

Z4α4m

4n3
(210)

9 Klein Paradox and the Hole Theory

So far we have ignored the negative solutions. However, the negative energy solu-
tions are required together with the positive energy solutions to form a complete
set. If we try to localize an electron by forming a wave packet, the wavefunc-
tion will be composed of some negative energy components. There will be more
negative energy components if the electron is more localized by the uncertainty
relation ∆x∆p ∼ ~. The negative energy components can not be ignored if the
electron is localized to distances comparable to its Compton wavelength ~/mc,
and we will encounter many paradoxes and dilemmas. An example is the Klein
paradox described below.

In order to localize electrons, we must introduce strong external forces confining
them to the desired region. Let’s consider a simplified situation that we want to
confine a free electron of energy E to the region z < 0 by a one-dimensional step-
function potential of height V as shown in Fig. 1. Now in the z < 0 half space
there is an incident positive energy plan wave of momentum k > 0 along the z
axis,

ψinc(z) = eikz


1
0
k

E+m

0

 , (spin-up). (211)
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Figure 1: Electrostatic potential idealized with a sharp boundary, with an incident
free electron wave moving to the right in region I.

The reflected wave in z < 0 region has the form

ψref(z) = a e−ikz


1
0
−k

E+m

0

+ b e−ikz


0
1
0
k

E+m

 , (212)

and the transmitted wave in the z > 0 region (in the presence of the constant
potential V ) has a similar form

ψtrans(z) = c eiqz


1
0
q

E−V +m

0

+ d eiqz


0
1
0
−q

E−V +m

 , (213)

with an effective momentum q of

q =
√

(E − V )2 −m2. (214)

The total wavefunction is

ψ(z) = θ(−z)[ψinc(z) + ψref(z)] + θ(z)ψtrans(z). (215)

Requiring the continuity of ψ(z) at z = 0, ψinc(0) + ψref(0) = ψtrans(0), we obtain

1 + a = c (216)

b = d (217)

(1− a)
k

E +m
= c

q

E − V +m
(218)

b
k

E +m
= d

−q
E − V +m

(219)

31



From these equations we can see

b = d = 0 (no spin-flip) (220)

1 + a = c (221)

1− a = rc where r =
q

k

E +m

E − V +m
(222)

⇒ c =
2

1 + r
, a =

1− r

1 + r
. (223)

As long as |E−V | < m, q is imaginary and the transmitted wave decays exponen-
tially. However, when V ≥ E+m the transmitted wave becomes oscillatory again.
The probability currents j = ψ†αψ = ψ†α3ψẑ, for the incident, transmitted, and
reflected waves are

jinc = 2
k

E +M
,

jtrans = 2c2
q

E − V +m
,

jref = 2a2 k

E +m
. (224)

we find

jtrans

jinc

= c2r =
4r

(1 + r)2
(< 0 for V ≥ E +m),

jref
jinc

= a2 =

(
1− r

1 + r

)2

(> 1 for V ≥ E +m). (225)

Although the conservation of the probabilities looks satisfied: jinc = jtrans + jref ,
but we get the paradox that the reflected flux is larger than the incident one!

There is also a problem of causality violation of the single particle theory which
you can read in Prof. Gunion’s notes, p.14–p.15.

Hole Theory

In spite of the success of the Dirac equation, we must face the difficulties from
the negative energy solutions. By their very existence they require a massive
reinterpretation of the Dirac theory in order to prevent atomic electrons from
making radiative transitions into negative-energy states. The transition rate for
an electron in the ground state of a hydrogen atom to fall into a negative-energy
state may be calculated by applying semi-classical radiation theory. The rate for
the electron to make a transition into the energy interval −mc2 to −2mc2 is

∼ 2α6

π

mc2

~
' 108sec−1 (226)

and it blows up if all the negative-energy states are included, which clearly makes
no sense.
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A solution was proposed by Dirac as early as 1930 in terms of a many-particle
theory. (This shall not be the final standpoint as it does not apply to scalar
particle, for instance.) He assumed that all negative energy levels are filled up in
the vacuum state. According to the Pauli exclusion principle, this prevents any
electron from falling into these negative energy states, and thereby insures the
stability of positive energy physical states. In turn, an electron of the negative
energy sea may be excited to a positive energy state. It then leaves a hole in
the sea. This hole in the negative energy, negatively charged states appears as a
positive energy positively charged particle—the positron. Besides the properties
of the positron, its charge |e| = −e > 0 and its rest mass me, this theory also
predicts new observable phenomena:

—The annihilation of an electron-positron pair. A positive energy electron falls
into a hole in the negative energy sea with the emission of radiation. From energy
momentum conservation at least two photons are emitted, unless a nucleus is
present to absorb energy and momentum.

—Conversely, an electron-positron pair may be created from the vacuum by an
incident photon beam in the presence of a target to balance energy and momentum.
This is the process mentioned above: a hole is created while the excited electron
acquires a positive energy.

Thus the theory predicts the existence of positrons which were in fact observed
in 1932. Since positrons and electrons may annihilate, we must abandon the
interpretation of the Dirac equation as a wave equation. Also, the reason for
discarding the Klein-Gordon equation no longer hold and it actually describes
spin-0 particles, such as pions. However, the hole interpretation is not satisfactory
for bosons, since there is no Pauli exclusion principle for bosons.

Even for fermions, the concept of an infinitely charged unobservable sea looks
rather queer. We have instead to construct a true many-body theory to accom-
modate particles and antiparticles in a consistent way. This is achieved in the
quantum theory of fields which will be the subject of the rest of this course.
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