
8 Foldy-Wouthuysen Transformation

We now have the Dirac equation with interactions. For a given problem we can
solve for the spectrum and wavefunctions (ignoring the negative energy solutions
for a moment), for instance, the hydrogen atom, We can compare the solutions
to those of the schrödinger equation and find out the relativistic corrections to
the spectrum and the wavefunctions. In fact, the problem of hydrogen atom can
be solved exactly. However, the exact solutions are problem-specific and involve
unfamiliar special functions, hence they not very illuminating. You can find the
exact solutions in many textbooks and also in Shulten’s notes. Instead, in this
section we will develop a systematic approximation method to solve a system in
the non-relativistic regime (E−m � m). It corresponds to take the approximation
we discussed in the previous section to higher orders in a systematic way. This
allows a physical interpretation for each term in the approximation and tells us the
relative importance of various effects. Such a method has more general applications
for different problems.

In Foldy-Wouthuysen transformation, we look for a unitary transformation UF

removes operators which couple the large to the small components.

Odd operators (off-diagonal in Pauli-Dirac basis): αi, γi, γ5, · · ·
Even operators (diagonal in Pauli-Dirac basis): 1, β, Σ, · · ·

ψ′ = UFψ = eiSψ, S = hermitian (171)

First consider the case of a free particle, H = α · p + βm not time-dependent.

i
∂ψ′

∂t
= eiSHψ = eiSHe−iSψ′ = H ′ψ′ (172)

We want to find S such that H ′ contains no odd operators. We can try

eiS = eβα·p̂θ = cos θ + βα · p̂ sin θ, where p̂ = p/|p|. (173)

H ′ = (cos θ + βα · p̂ sin θ) (α · p + βm) (cos θ − βα · p̂ sin θ)

= (α · p + βm) (cos θ − βα · p̂ sin θ)2

= (α · p + βm) exp (−2βα · p̂θ)

= (α · p)

(

cos 2θ − m

|p| sin 2θ

)

+ β (m cos 2θ + |p| sin 2θ) . (174)

To eliminate (α · p) term we choose tan 2θ = |p|/m, then

H ′ = β
√

m2 + |p|2. (175)

This is the same as the first hamilton we tried except for the β factor which also
gives rise to negative energy solutions. In practice, we need to expand the hamilton
for |p| � m.
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General case:

H = α · (p − eA) + βm+ eΦ

= βm + O + E , (176)

O = α · (p − eA), E = eΦ, βO = −Oβ, βE = Eβ (177)

H time-dependent ⇒ S time-dependent

We can only construct S with a non-relativistic expansion of the transformed
hamilton H ′ in a power series in 1/m.

We’ll expand to p4

m3 and p×(E,B)
m2 .

Hψ = i
∂

∂t

(

e−iSψ′
)

= e−iSi
∂ψ′

∂t
+

(

i
∂

∂t
e−iS

)

ψ′

⇒ i
∂ψ′

∂t
=

[

eiS

(

H − i
∂

∂t

)

e−iS

]

ψ′ = H ′ψ′ (178)

S is expanded in powers of 1/m and is “small” in the non-relativistic limit.

eiSHe−iS = H + i[S,H] +
i2

2!
[S, [S,H]] + · · · + in

n!
[S, [S, · · · [S,H]]]. (179)

S = O( 1
m

) to the desired order of accuracy

H ′ = H + i[S,H] − 1

2
[S, [S,H]] − i

6
[S, [S, [S,H]]] +

1

24
[S, [S, [S, [S, βm]]]]

−Ṡ − i

2
[S, Ṡ] +

1

6
[S, [S, Ṡ]] (180)

We will eliminate the odd operators order by order in 1/m and repeat until the
desired order is reached.

First order [O(1)]:
H ′ = βm+ E + O + i[S, β]m. (181)

To cancel O, we choose S = − iβO
2m

,

i[S,H] = −O +
β

2m
[O, E ] =

1

m
βO2 (182)

i2

2
[S, [S,H]] = −βO

2

2m
− 1

8m2
[O, [O, E ]] − 1

2m2
O3 (183)

i3

3!
[S, [S, [S,H]]] =

O3

6m2
− 1

6m3
βO4 (184)

i4

4!
[S, [S, [S, [S,H]]]] =

βO4

24m3
(185)

−Ṡ =
iβȮ
2m

(186)

− i

2
[S, Ṡ] = − i

8m2
[O, Ȯ] (187)
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Collecting everything,

H ′ = β

(

m+
O2

2m
− O4

8m3

)

+ E − 1

8m2
[O, [O, E ]] − i

8m2
[O, Ȯ] (188)

+
β

2m
[O, E ] − O3

3m2
+
iβȮ
2m

= βm + E ′ + O′ (189)

Now O′ is O( 1
m

), we can transform H ′ by S ′ to cancel O′,

S ′ =
−iβ
2m

O′ =
−iβ
2m

(

β

2m
[O, E ] − O3

3m2
+
iβȮ
2m

)

(190)

After transformation with S ′,

H ′′ = eiS′

(

H ′ − i
∂

∂t

)

e−iS′

= βm+ E ′ +
β

2m
[O′, E ′] +

iβȮ′

2m
(191)

= βm+ E ′ + O′′, (192)

where O′′ is O( 1
m2 ), which can be cancelled by a third transformation, S ′′ = −iβO′′

2m

H ′′′ = eiS′′

(

H ′′ − i
∂

∂t

)

e−iS′′

= βm+ E ′ (193)

= β

(

m +
O2

2m
− O4

8m3

)

+ E − 1

8m2
[O, [O, E ]] − i

8m2
[O, Ȯ] (194)

Evaluating the operator products to the desired order of accuracy,

O2

2m
=

(α · (p − eA))2

2m
=

(p − eA)2

2m
− e

2m
Σ · B (195)

1

8m2

(

[O, E ] + iȮ
)

=
e

8m2
(−iα · ∇Φ − iα · Ȧ) =

ie

8m2
α · E (196)

[

O, ie

8m2
α · E

]

=
ie

8m2
[α · p,α · E]

=
ie

8m2

∑

i,j

αiαj

(

−i∂E
j

∂xi

)

+
e

4m2
Σ · E × p (197)

=
e

8m2
(∇ · E) +

ie

8m2
Σ · (∇× E) +

e

4m2
Σ · E × p

So, the effective hamiltonial to the desired order is

H ′′′ = β

(

m+
(p − eA)2

2m
− p4

8m3

)

+ eΦ − e

2m
βΣ · B

− ie

8m2
Σ · (∇× E) − e

4m2
Σ · E × p − e

8m2
(∇ · E) (198)
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The individual terms have a direct physical interpretation.

The first term in the parentheses is the expansion of

√

(p − eA)2 +m2 (199)

and −p4/(8m3) is the leading relativistic corrections to the kinetic energy.

The two terms

− ie

8m2
Σ · (∇× E) − e

4m2
Σ · E × p (200)

together are the spin-orbit energy. In a spherically symmetric static potential, they
take a very familar form. In this case ∇× E = 0,

Σ · E × p = −1

r

∂Φ

∂r
Σ · r × p = −1

r

∂Φ

∂r
Σ · L, (201)

and this term reduces to

Hspin−orbit =
e

4m2

1

r

∂Φ

∂r
Σ · L. (202)

The last term is known as the Darwin term. In a coulomb potential of a nucleus
with charge Z|e|, it takes the form

− e

8m2
(∇ · E) = − e

8m2
Z|e|δ3(r) =

Ze2

8m2
δ3(r) =

Zαπ

2m2
δ3(r), (203)

so it can only affect the S (l = 0) states whose wavefunctions are nonzero at the
origin.

For a Hydrogen-like (single electron) atom,

eΦ = −Ze
2

4πr
, A = 0. (204)

The shifts in energies of various states due to these correction terms can be com-
puted by taking the expectation values of these terms with the corresponding
wavefunctions.

Darwin term (only for S (l = 0) states):

〈

ψns

∣

∣

∣

∣

Zαπ

2m2
δ3(r)

∣

∣

∣

∣

ψns

〉

=
Zαπ

2m2
|ψns(0)|2 =

Z4α4m

2n3
. (205)

Spin-orbit term (nonzero only for l 6= 0):

〈

Zα

4m2

1

r3
σ · r × p

〉

=
Z4α4m

4n3

[j(j + 1) − l(l + 1) − s(s+ 1)]

l(l + 1)(l + 1
2
)

. (206)
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Relativistic corrections:
〈

− p4

8m3

〉

=
Z4α4m

2n4

(

3

4
− n

l + 1
2

)

. (207)

We find

∆E(l = 0) =
Z4α4m

2n4

(

3

4
− n

)

(208)

= ∆E(l = 1, j =
1

2
), (209)

so 2S1/2 and 2P1/2 remain degenerate at this level. They are split by Lamb shift
(2S1/2 > 2P1/2) which can be calculated after you learn radiative corrections in
QED. The 2P1/2 and 2P3/2 are split by the spin-orbit interaction (fine structure)
which you should have seen before.

∆E(l = 1, j =
3

2
) − ∆E(l = 1, j =

1

2
) =

Z4α4m

4n3
(210)

9 Klein Paradox and the Hole Theory

So far we have ignored the negative solutions. However, the negative energy solu-
tions are required together with the positive energy solutions to form a complete
set. If we try to localize an electron by forming a wave packet, the wavefunc-
tion will be composed of some negative energy components. There will be more
negative energy components if the electron is more localized by the uncertainty
relation ∆x∆p ∼ ~. The negative energy components can not be ignored if the
electron is localized to distances comparable to its compton wavelength ~/mc, and
we will encounter many paradoxes and dilemmas. An example is the Klein paradox
described below.

In order to localize electrons, we must introduce strong external forces confining
them to the desired region. Let’s consider a simplified situation that we want to
confine a free electron of energy E to the region z < 0 by a one-dimensional step-
function potential of height V as shown in Fig. 1. Now in the z < 0 half space
there is an incident positive energy plan wave of momentum k > 0 along the z
axis,

ψinc(z) = eikz









1
0
k

E+m

0









, (spin-up). (211)
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Figure 1: Electrostatic potential idealized with a sharp boundary, with an incident
free electron wave moving to the right in resion I.

The reflected wave in z < 0 region has the form

ψref(z) = a e−ikz









1
0
−k

E+m

0









+ b e−ikz









0
1
0
k

E+m









, (212)

and the transmitted wave in the z > 0 region (in the presence of the constant
potential V ) has a similar form

ψtrans(z) = c eiqz









1
0
q

E−V +m

0









+ d e−iqz









0
1
0
−q

E−V +m









, (213)

with an effetive momentum q of

q =
√

(E − V )2 −m2. (214)

The total wavefunction is

ψ(z) = θ(−z)[ψinc(z) + ψref(z)] + θ(z)ψtrans(z). (215)

Requiring the continuity of ψ(z) at z = 0, ψinc(0) + ψref(0) = ψtrans(0), we obtain

1 + a = c (216)

b = d (217)

(1 − a)
k

E +m
= c

q

E − V +m
(218)

b
k

E +m
= d

−q
E − V +m

(219)
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From these equations we can see

b = d = 0 (no spin-flip) (220)

1 + a = c (221)

1 − a = rc where r =
q

k

E +m

E − V +m
(222)

⇒ c =
2

1 + r
, a =

1 − r

1 + r
. (223)

As long as |E−V | < m, q is imaginary and the transmitted wave decays exponen-
tially. However, when V ≥ E+m the transmitted wave becomes oscillatory again.
The probablity currents j = ψ†αψ = ψ†α3ψẑ, for the incident, transmitted, and
reflected waves are

jinc = 2
k

E +M
,

jtrans = 2c2
q

E − V +m
,

jref = 2a2 k

E +m
. (224)

we find

jtrans

jinc
= c2r =

4r

(1 + r)2
(< 0 for V ≥ E +m),

jref
jinc

= a2 =

(

1 − r

1 + r

)2

(> 1 for V ≥ E +m). (225)

Although the conservation of the probabilities looks satified: jinc = jtrans + jref ,
but we get the paradox that the reflected flux is larger than the incident one!

There is also a problem of causality violation of the single particle theory which
you can read in Prof. Gunion’s notes, p.14–p.15.

Hole Theory

In spite of the success of the Dirac equation, we must face the difficulties from
the negative energy solutions. By their very existence they require a massive
reinterpretation of the Dirac theory in order to prevent atomic electrons from
making radiative transitions into negative-energy states. The transition rate for
an electron in the ground state of a hydrogen atom to fall into a negative-energy
state may be calculated by applying semiclassical radiation theory. The rate for
the electron to make a transition into the energy interval −mc2 to −2mc2 is

∼ 2α6

π

mc2

~
' 108sec−1 (226)

and it blows up if all the negative-energy states are included, which clearly makes
no sense.
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A solution was proposed by Dirac as early as 1930 in terms of a many-particle
theory. (This shall not be the final standpoint as it does not apply to scalar
particle, for instance.) He assumed that all negative energy levels are filled up in
the vacuum state. According to the Pauli exclusion principle, this prevents any
electron from falling into these negative energy states, and thereby insures the
stability of positive energy physical states. In turn, an electron of the negative
energy sea may be excited to a positive energy state. It then leaves a hole in
the sea. This hole in the negative energy, negatively charged states appears as a
positive energy positively charged particle—the positron. Besides the properties
of the positron, its charge |e| = −e > 0 and its rest mass me, this theory also
predicts new observable phenomena:

—The annihilation of an electron-positron pair. A positive energy electron falls
into a hole in the negative energy sea with the emission of radiation. From energy
momentum conservarion at least two photons are emitted, unless a nucleus is
present to absorb energy and momentum.

—Conversely, an electron-positron pair may be created from the vacuum by an
incident photon beam in the presence of a target to balance energy and momentum.
This is the process mentioned above: a hole is created while the excited electron
acquires a positive energy.

Thus the theory predicts the exisstence of positrons which were in fact observed
in 1932. Since positrons and electrons may annihilate, we must abandon the
interpretation of the Dirac equation as a wave equation. Also, the reason for
discarding the Klein-Gordon equation no longer hold and it actually describes
spin-0 particles, such as pions. However, the hole interpretation is not satisfactory
for bosons, since there is no Pauli exclusion principle for bosons.

Even for fermions, the concept of an infinitely chaged unobservable sea looks rather
queer. We have instead to construct a true many-body theory to accommodate
particles and antiparticles in a consistent way. This is achieved in the quantume
theory of fields which will be the subject of the rest of this course.
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