5 Lorentz Covariance of the Dirac Equation

We will set A = ¢ = 1 from now on.

In E&M, we write down Maxwell’s equations in a given inertial frame, @, ¢, with the
electric and magnetic fields E, B. Maxwell’s equations are covariant with respecct
to Lorentz transformations, i.e., in a new Lorentz frame, @', t', the equations have
the same form, but the fields E'(x’, t'), B'(2’, t') are different.

Similarly, Dirac equation is Lorentz covariant, but the wavefunction will change
when we make a Lorentz transformation. Consider a frame F' with an observer O
and coordinates z*. O describes a particle by the wavefunction ¢ (x*) which obeys

(wi - m) P, (97)

oxH
In another inertial frame F’ with an observer O’ and coordinates x” given by
= At (98)

O’ describes the same particle by ¢'(2’) and ¢'(z") satisfies

., 0
(w” R m) W), (99)
Lorentz covariance of the Dirac equation means that the v matrices are the same

in both frames.

What is the transformation matrix S which takes 1 to ¢’ under the Lorentz trans-
formation?

¥/(Az) = Su(z). (100)
Applying S to Eq. (97),

iSv“S‘liSw(x“)—mSw(x“) =0

OxH
0
. -1 1o vy
= iSY"'S @w (") —may' (™) = 0. (101)
Using
0 g 0x" , 0
oxk O™ Ozt A O (102)
we obtain 3
iSV“S_lA”uWW(x’”) —ma) (") = 0. (103)
Comparing it with Eq. (99), we need
Sv“S‘lA”u = 4" or equivalently Sy*S™! = (A_l)uu Y. (104)
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We will write down the form of the S matrix without proof. You are encouraged
to read the derivation in Shulten’s notes Chapter 10, p.319-321 and verify it by
yourself.

For an infinitesimal Lorentz transformation, A* = §* + e . Multiplied by g** it
can be written as

AP = gt 4 (105)

where €** is antisymmetric in 4 and A\. Then the corresponding Lorentz transfor-
mation on the spinor wavefunction is given by

S(e"™)y=1- %UWE"W, (106)
where . )
7 7

O = 5(7}171/ - ’YV’Y;L) = 5[7#7 /711]‘ (107>

For finite Lorentz transformation,

S = exp (—%UWEW) : (108)

Note that one can use either the active transformation (which transforms the ob-
ject) or the passive transformation (which transforms the coordinates), but care
should be taken to maintain consistency. We will mostly use passive transforma-
tions unless explicitly noted otherwise.

Example: Rotation about z-axis by ¢ angle (passive).

—? = 4t =0, (109)
i .
o2 = 5[71, Vo] = 11172

. —io? 0
— Lo —iod
30
i (o3 0 0 (o3 0\ . 0
S = exp <—|—§9(0 03)>:]COS§+Z(O Ug)sma (111)

We can see that 1 transforms under rotations like an spin-1/2 object. For a
rotation around a general direction n,

S:Icosg—l—i’ﬁ,-Esing. (112)
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Example: Boost in 2 direction (passive).

= 0=y, (113)
7 )
01 = 5[%7 71] = Y071, (114>

S = exp (_ZU‘”EW) = exp (—5772%71)

- o () -0 ()

= Icoshg — a'sinh g (115)

For a particle moving in the direction of n in the new frame, we need to boost the
frame in the —n direction,

S:Icoshg+a-ﬁsinhg. (116)

6 Free Particle Solutions to the Dirac Equation

The solutions to the Dirac equation for a free particle at rest are

1

P = \/@ 8 e FE=4m,
0
0

thy = 27m (1] —imt B = +4m,
0
0

Vs = va (1] em, B =—m,
0
0

vy = 277" 8 e E=-—m, (117)
1

where we have set h = ¢ =1 and V is the total volume. Note that I have chosen
a particular normalization

/ drpTp = 2m (118)
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for a particle at rest. This is more convenient when we learn field theory later,
because 171 is not invariant under boosts. Instead, it’s the zeroth component of
a 4-vector, similar to FE.

The solutions for a free particle moving at a constant velocity can be obtained by
a Lorentz boost,

S:Icoshg+a-ﬁsinhg. (119)

Using the Pauli-Dirac representation,

« - O_i 0 )

cosh o - nsinh
— 2 2
S (a’ -nysinh cosh 7 ) ’ (120)
and the following relations,
El
coshn = ~'==—, sinhn=+'f,
m
n 1 4 coshn \/1+’y’ m+ L'
h — — = —
sty \/ 2 2 om
..M coshnp —1 \/E’—m
h — = =
Y \/ 2 om
_pLx/H — p’+ . w’ _ E't/ — —p“x“ — —mt’ (121)

where p/, = |p/,|n is the 3-momentum of the positive energy state, we obtain

1
cosh 2 ( )
W) = Snle) = )2 2\0) | o

1
= vm+ E’
\/V E,_mO"’fL(l

6i(p/+-a:’—E’t/)

=
Q
k!

)
m+ B (O ( ilP @ ~E't) (122)

where we have used

E — E12 _ 2 /
E'+m E'+m E'+m

in the last line.



Y (x") has the same form except that ((1)) is replaced by ((1])

For the negative energy solutions E = —E' = —/|p|? + m? and p’ = vnFk’ =
—vE'n = —p’.. So we have

op_ ].)
1 ~ Em ( o B
Py(x') = va + £ ] 0/ eiteasr ), (124)
(o)
o . 1 0
and ¢ (2) is obtained by the replacement o) = 1)

Now we can drop the primes and the 4 subscripts,

1 X+,— ) i(p-e—Et 1 i(pz—F
= —VE+m| o elPe=B) — Uy g€ PEEY,
he T <—E+’?n><+,— Vv
1 __op X . 1 )
= —VE+m ( Etm A+, ) e PetE) — gy, efPHEY (105
Vo VvV X+,— N (125)

where

X+ = (é) ;X-= (?) (126)

(V' is the proper volume in the frame where the particle is at rest.)

Properties of spinors uq, - -uy

ulu, =0 forr # s. (127)
T _ o X
wu, = (E+m) (Xl XLEJF—Z;) <%+X+)
o-p)lo-p

Using the following identity:
(o -a)(o-b) =0,a;0;b; = (0;; + i€;01)ab; =a-b+io - (a x b), (129)

we have
2
p

E? +2Em +m? + |p|*
— (E t

2E? +2FEm
E+m
= 2BEx! y, =2E. (130)

= X+ X+
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Similarly for other u, we have ulu, = 6,,2F, which reflects that p = 9Ty is the
zeroth component of a 4-vector.

One can also check that
Upts = £2mo, (131)

where + for r = 1, 2 and — for r = 3, 4.

_ I 0
uiur = uJ{’yOul ’YO: (0 —])

2
— (E T 1= L

B md (1= 52 ) v

E? +2Em +m? — |p|?

— (E i

( + m)X-i- (E + m)2 X+
B 2m? + 2Em
= X+ E+m X+
= 2mx1X+ =2m (132)

is invariant under Lorentz transformation.
Orbital angular momentum and spin
Orbital angular momentum

L = rxp or
L; = €jkrip. (133)

(We don’t distinguish upper and lower indices when dealing with space dimensions
only.)
dL;
dt

= i[H, L;]

= ilca-p+ fmc?, Ly
= icay[Pn, €K7 Pk

= 1COE K [Pn, 5Dk

= icon€ijk(—10n; )P
= C€jk0Pk

= c¢(axp); #0. (134)

We find that the orbital angular momentum of a free particle is not a constant of
the motion.

21



Consider the spin %E =1 (Ui 0 ),

2 0 o;

dx;
dt

= i[H> EZ]

= i[cayp; + Bmc?, ]

. . g; 0 0 I 0 g;
= icloy, Xilp; {usmg Yivs = <0 0') (] O) = <U' 0) =q; = 7521}

= ic[v:5;, Tilp;
= icys[X5, Yilp;
iC’Y5(—2iEiijk)pj
207Y5€k 21D
2c€;,0kDj
= —2c¢(a X p);. (135)
Comparing it with Eq. (134), we find
d(L; + 1%,
ULt 5%) 2 ) o, (136)

so the total angular momentum J = L + %E is conserved.

7 Interactions of a Relativistic Electron with an
External Electromagnetic Field

We make the usual replacement in the presence of external potential:

0
EFE — E—ep= iha —ep, e <0 for electron

p — p— ZA — _ihV — EA. (137)

In covariant form,

e

au_’6u+hcAu_’au+ieAu h=c=1. (138)
Dirac equation in external potential:
iy (0 + ieAy, )y —mip = 0. (139)

Two component reduction of Dirac equation in Pauli-Dirac basis:

o e ()= (0 O () - (is) -0
= (E—ep)a—0o-(p—eA)pp—mis=0 (140)
—(E—eg)yp+0o-(p—eA)ps—mypp =0 (141)
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where E and p represent the operators ¢0; and —i'V respectively. Define W =
E —m, ™ =p—eA, then we have

o g = (W —ep)ha (142)

o-mhsy = 2m+W —ep)p (143)
From Eq. (143),

Yvp=2m+W —ep) o - w4 (144)

Substitute it into Eq. (142),

(o -m)(o-m)

om W g 4= W med)a 9

In non-relativistic limit, W — e¢ < m,

1 1 W —eo
= (1- ). 14
2m+W —eg 2m( 2m * ) (146)

In the lowest order approximation we can keep only the leading term ﬁ,

(o) o = (W = e6)u, (147
Using Eq. (129),
(o -m) (o -m)ps=[m-7+io  (7wxm)|a. (148)

(mxm)pa = [(p—eA) x (p—eA)s
= [-eAxp—epx Ala
= [+ieA x V +ieV x Alpy

= Z€¢A(V X A)
= 1eByy, (149)
S0 )
e
5 (P — APV — o0 By + edha = Wiha. (150)
m 2m
Restoring h, c,
1 € (\9 eh
5P = S A s — oo - B+ egpa = Wiha. (151)
m c 2me

This is the “Pauli-Schrodinger equation” for a particle with the spin-magnetic
moment,

h
p=-2o—2 %49 (152)
2me 2me
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In comparison, the relation between the angular momentum and the magnetic
moment of a classical charged object is given by

Inr?

w 2 ewr? e
o= _

2 6
— = = = —1L. 153
c 627r c 2c 2me mwr 2me ( )

We can write

e
=g,—0S 154
B=3 2me ( )

in general. In Dirac theory, g, = 2. Experimentally,

gs(e7) =2 x (1.0011596521859 & 38 x 10~ 1?). (155)
The deviation from 2 is due to radiative corrections in QED, (g —2)/2 = 3= +
The predicted value for g, — 2 using « from the quantum Hall effect is

(gs — 2)qm/2 = 0.0011596521564 4= 229 x 10~ 2. (156)

They agree down to the 107! level.
There are also spin-1/2 particles with anomalous magnetic moments, e.g.,

€] €]

Hproton = 2.79 y  Mneutron = —1.91 (157)

2my,c 2my,c’

This can be described by adding the Pauli moment term to the Dirac equation,
iV (Op + iqAL )Y — map + ko, F* 9 = 0. (158)
Recall

7
Ow = 5(7}171/_%/7#)’

(T o [0 =\ (0 =\
oo = W=t —1)\et 0 )T '\t 0 )T '

. ok 0
oy = Yy = €St = € <O ok
FOi — _Ei,
Fi = —¢ikpk, (159)

Then the Pauli moment term can be written as
iV (0 4 igA, )b — mab + 2ike - By — 2k - By = 0. (160)
The two component reduction gives

(E—qd)pa — o - wibgp — mipy + 2iko - Evyg — 2ko - By, = 0, (161)
—(E —qd)Yp + 0o -y — mibg + 2iko - Evy — 2ko - By = 0. (162)
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(-7 —2iko - E)Ypp = (W —q¢p—2ko - B)i,, (163)
(o-m+2iko-E)Ys = (2m+W —q¢+2ko - B)yp. (164)

Again taking the non-relativistic limit,
1 4
Vg ~ %(U'W—l—%kO’-E)@/JA, (165)
we obtain
1
m

(W —q¢p —2ko - Bypy = — (o -7 —2iko - E)(o -7 + 2iko - E)s.  (166)

Let’s consider two special cases.

(a) =0, E=0
1
(W =2k - B)va = 5—(0 - )*ts
1
= Wips = — 72y — Lo Bipa + 2ko - Biby
2m 2m
= p=-L 9 (167)
2m

(b) B =0, E # 0 for the neutron (¢ = 0)

1 . ‘
Wia = %0' ’ (p + Z,unE) o (p - Z,unE)wA

= Lo+ itE) - 0+ iuE) +io - (p+ ipE) X (p— i E)]

2m
1 | | o .
= 5o [P E i B p—ipp - E+io - (ipp < E — ip, B x )] ta
1
= 5 [P BB (V- B) 4 2,0 (B % p) + i - (V x B)]
1
= 5 [P"+ 0B — pnp + 20 - (B X )] s (168)

The last term is the spin-orbit interaction,

J-(Exp):—;%O’-(TX]ﬁ:—;%O“L. (169)

The second to last term gives an effective potential for a slow neutron moving in
the electric field of an electron,

V= —gLnfL’ - 5—%(—@)53(7«). (170)

It’s called “Foldy” potential and does exist experimentally.
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